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In this section, we introduce the soft and collinear limits in the tree amplitude.

Soft and collinear limits are important concepts in modern quantum field theory. In these limits,

a complicated often factorizes to simpler amplitudes. They have immediate usages:

• Soft and collinear limits can be used to check if an amplitude result is correct or not.

• From soft and collinear limit, often we can guess the expression of a complicated amplitude.

This approach is called the amplitude “bootstrap”.

Further, soft and collinear limits can be used to study the parton distribuction function in QCD.

Nowadays, soft and collinear limits turn into an active research field called the soft and collinear

effective theory (SCET).

I. SOFT LIMIT

We consider the soft limit of a tree gluon amplitude in Yang-Mills theory. The object under

concern is the partial amplitude A(1, . . . , a, i, b . . . n).

Consider the soft limit,

kµi → 0 . (1)

Note that this is not a Lorentz invariant statement. The Lorentz invariant statement is

|sij | << |skl|, j, k, l 6= i, k 6= l (2)

In this limit, A(1, . . . , a, i, b . . . n) would be divergent. The reason for this divergence is that prop-

agators like 1/(pi + pj)
2 →∞.

The divergent propagator for this partial amplitude must be from the adjacent particles of pi,

i.e., pa and pb.

• The divergent term from 1/(pi + pa)
2.

M(a, i)µ
−i

(pi + pa)2
M(1, . . . , pa + pi, b . . . n)µ (3)

where M(a, i)µ is the three-point vertex and M(1, . . . , pa+pi, b, . . . n)µ is the sum of Feynman

tree diagrams with gluons a, i combined.

From color stripped Feynman rules,

M(a, i)µ =
i√
2

(
(εi · εa)(pa − pi)µ + εµi (2pi − pa) · εa + εµa(−2pa − pi) · εi

)
(4)

Only the last term is non-vanishing and we consider it as the leading term for the soft limit.
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• The divergent term from 1/(pi + pb)
2.

M(i, b)µ
−i

(pi + pb)2
M(1, . . . , a, pi + pb . . . n)µ (5)

where M(i, b)µ is the three-point vertex and M(1, . . . , a, pi+pb, . . . n)µ is the sum of Feynman

tree diagrams with gluons i, b combined.

From color stripped Feynman rules,

M(i, b)µ =
i√
2

(
(εi · εb)(pi − pb)µ + εµb (2pb − pi) · εi + εµi (−pb − 2pi) · εb

)
(6)

Only the second term is non-vanishing.

So we can combine the divergent terms together.

−i
(
M(a, i)µ

(pi + pa)2
M(1, . . . , pa + pi, b, . . . n)µ +

M(i, b)µ

(pi + pb)2
M(1, . . . , a, pi + pb, . . . n)µ

)
→ 1√

2

(
− 2(pa · εi)

A(1, . . . a, b, . . . , n)

(pa + pi)2
+ 2(pb · εi)

A(1, . . . a, b, . . . , n)

(pi + pb)2

)
(7)

Then we need to specify the helicity of i.

ε+i =
√

2
λkλ̃i
〈ki〉

, ε−i =
√

2
λiλ̃k
[ik]

, (8)

It is convenient to choose k = a.

• i− helicity. In this case, (7) becomes

A(1, . . . , a, i−, b, . . . , n)→ − [ab]

[ai][ib]
A(1, . . . , a, b, . . . , n) . (9)

• i+ helicity. In this case, (7) becomes

A(1, . . . , a, i+, b, . . . , n)→ 〈ab〉
〈ai〉〈ib〉

A(1, . . . , a, b, . . . , n) . (10)

Note that the helicity for i is consistent in these formulae.

The amazing feature is that the soft limit formula only depends on the helicity of i, not on

the helicities of a and b. These formulae are still true even if a and b are quarks. The reason is

that when the i-gluon has a long wavelength, the quantum feature is gone and the theory becomes

classical. In this situation, helicity as a quantum number, is no longer relevant.
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In computation, we may need a rigorous kinematics for the soft limit. It is impossible to take

pi → 0 without changing other momenta. Instead, we use the spinor table

1 1 1̃− |c|2z21̃− cd̄z22̃

2 2 2̃− c̄dz21̃− |d|2z22̃

. . . . . .

i z(c1 + d2) z(c̄1̃ + d̄2̃)

. . . . . .

(11)

Here all particles are on-shell and z is free parameter. The soft limit is rigorously defined as z → 0.

II. COLLINEAR LIMIT

Similarly, we can consider the collinear limit when two massless particles become parallel

(collinear).

For a tree gluon partial amplitude A(1, . . . i, i+ 1, . . . , n). We take the limit when

pi → zP, pi+1 → (1− z)P (12)

where P 2 = 0 is a null vector. That is, to take

λi → zλP , λ̃i → zλ̃P

λi+1 → (1− z)λP , λ̃i+1 → (1− z)λ̃P (13)

In this limit

ε±i → ε±P , ε±i+1 → ε±P (14)

Again, the amplitude A(1, . . . i, i + 1, . . . , n) becomes divergent in this limit. Only the pi and

pi+1 combined vertex contributes to the divergence. Hence, the collinear limit for tree amplitude

reads,

A(1, . . . i, i+ 1, . . . , n)→
∑
h=±

Splith(i, i+ 1)A(1, . . . , P−h, . . . , n) (15)

Splith(i, i+ 1) is called the tree-level splitting function.

It is possible to derive the splitting function from tree-level Feynman diagram analysis. This

function depends on the helicity of both i and i+ 1. Here we just show one example, the determi-

nation of Split−(i+, (i+ 1)+).
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In the collinear limit, the tree amplitude factorizes as,

A(1, . . . i, i+ 1, . . . , n)→Mµ(i, i+ 1)
−i

2pi · pi+1
Mµ(1, . . . , pi + pi+1, . . . , n). (16)

From Feynman rules, we have,

M(i, i+ 1)µ =
i√
2

(
(εi · εi+1)(pi − pi+1)

µ + εµi+1(2pi+1 + pi) · εi + εµi (−2pi − pi+1) · εi+1

)
. (17)

Note that all terms are vanishing in the collinear limit. It does not mean that the divergence is

gone. We needed a detailed analysis.

For the (i+, (i+1)+) case, we choose the same reference vector pk to remove terms proportional

to εi · εi+1. Then the second term is evaluated to

1√
2
εµi+1(2pi+1 · εi)

1

〈i, i+ 1〉[i, i+ 1]

= −
√

2εµi+1

〈i+ 1, k〉
〈k, i〉〈i, i+ 1〉

→ ε+µP

√
1− z√
z

1

〈i, i+ 1〉
(18)

The third term becomes

ε+µP

√
z√

1− z
1

〈i+ 1, i〉
(19)

Combine them together, we have

Split−(i+, (i+ 1)+) =
1√

z(1− z)〈i, i+ 1〉
, (20)

Split+(i+, (i+ 1)+) = 0 . (21)

Note that the variable z appears in the splitting function. Like the soft limit, the helicities of other

particles do not enter this function.

The divergence is coming from 1/〈i, i + 1〉. This looks like a square root of pi · pj . Therefore

the collinear limit is not as “divergent” as the soft limit.

The derivation of other splitting functions are involved. Here we list the result [1],

Split−(i−, (i+ 1)−) = 0 , (22)

Split+(i+, (i+ 1)−) =
(1− z)2√

z(1− z)〈i, i+ 1〉
, (23)

Split−(i+, (i+ 1)−) = − z2√
z(1− z)[i, i+ 1]

, (24)
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For example, we consider the collinear limit for A(1−2−3+4+5+) with,

λ4 = zλP , λ̃4 = zλP (25)

λ5 = (1− z)λP , λ̃5 = (1− z)λ̃P (26)

The MHV amplitude factorize as,

A(1−2−3+4+5+) = i
〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
(27)

=
1√

z(1− z)〈45〉
i

〈12〉4

〈12〉〈23〉〈3P 〉〈P1〉
(28)

=
1√

z(1− z)〈45〉
A(1−2−3+P+) . (29)

Similarly, for

λ5 = zλP , λ̃5 = zλP (30)

λ1 = (1− z)λP , λ̃1 = (1− z)λ̃P (31)

The MHV amplitude factorize as,

A(1−2−3+4+5+) = i
〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
(32)

=
(1− z)2√
z(1− z)〈51〉

A(P−2−3+4+) . (33)

These factorizations are consistent with the splitting functions.

The rigorous collinear kinematics can be for example parameterized as,

1 1 1̃−
√
ztλ̃P

2 2− t
√

1− zλP 2̃

. . . . . .

i
√
zλP + t1

√
zλ̃P

i+ 1
√

1− zλP
√

1− zλ̃P + t2̃

. . . . . .

(34)

where t is a free parameter for the collinear limit.
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